Preconditioned Galerkin and minimal residual methods for solving Sylvester equations
نویسندگان
چکیده
This paper presents preconditioned Galerkin and minimal residual algorithms for the solution of Sylvester equations AX XB = C. Given two good preconditioner matricesM and N for matrices A and B, respectively, we solve the Sylvester equations MAXN MXBN =MCN. The algorithms use the Arnoldi process to generate orthonormal bases of certain Krylov subspaces and simultaneously reduce the order of Sylvester equations. Numerical experiments show that the solution of Sylvester equations can be obtained with high accuracy by using the preconditioned versions of Galerkin and minimal residual algorithms and this versions are more robust and more efficient than those without preconditioning. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملA Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems
We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients. Karhunen-Loève expansions are used to represent the stochastic variables and the stochastic Galerkin method with double orthogonal polynomials is used to derive a sequence of uncoupled determi...
متن کاملOn Preconditioned Iterative Methods for Burgers Equations
We study the Newton method and a fixed-point method for solving the system of nonlinear equations arising from the Sinc-Galerkin discretization of the Burgers equations. In each step of the Newton method or the fixedpoint method, a structured subsystem of linear equations is obtained and needs to be solved numerically. In this paper, preconditioning techniques are applied to solve such linear s...
متن کاملOn the Numerical Solution of Large Scale Sylvester Matrix Equations
This paper presents equivalent forms of the Sylvester matrix equations. These equivalent forms allow us to use block linear methods for solving large Sylvester matrix equations. In each step of theses iterative methods we use global FOM or global GMRES algorithm for solving an auxiliary block matrix equations. Also, some numerical experiments for obtaining the numerical approximated solution of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 181 شماره
صفحات -
تاریخ انتشار 2006