Preconditioned Galerkin and minimal residual methods for solving Sylvester equations

نویسندگان

  • A. Kaabi
  • Faezeh Toutounian
  • Asghar Kerayechian
چکیده

This paper presents preconditioned Galerkin and minimal residual algorithms for the solution of Sylvester equations AX XB = C. Given two good preconditioner matricesM and N for matrices A and B, respectively, we solve the Sylvester equations MAXN MXBN =MCN. The algorithms use the Arnoldi process to generate orthonormal bases of certain Krylov subspaces and simultaneously reduce the order of Sylvester equations. Numerical experiments show that the solution of Sylvester equations can be obtained with high accuracy by using the preconditioned versions of Galerkin and minimal residual algorithms and this versions are more robust and more efficient than those without preconditioning. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

A Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems

We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients. Karhunen-Loève expansions are used to represent the stochastic variables and the stochastic Galerkin method with double orthogonal polynomials is used to derive a sequence of uncoupled determi...

متن کامل

On Preconditioned Iterative Methods for Burgers Equations

We study the Newton method and a fixed-point method for solving the system of nonlinear equations arising from the Sinc-Galerkin discretization of the Burgers equations. In each step of the Newton method or the fixedpoint method, a structured subsystem of linear equations is obtained and needs to be solved numerically. In this paper, preconditioning techniques are applied to solve such linear s...

متن کامل

On the Numerical Solution of Large Scale Sylvester Matrix Equations

This paper presents equivalent forms of the Sylvester matrix equations. These equivalent forms allow us to use block linear methods for solving large Sylvester matrix equations. In each step of theses iterative methods we use global FOM or global GMRES algorithm for solving an auxiliary block matrix equations. Also, some numerical experiments for obtaining the numerical approximated solution of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 181  شماره 

صفحات  -

تاریخ انتشار 2006